Background

- Underwater communication has numerous applications[1]
- The most common solution is to use acoustics[1]
- The underwater acoustic channel presents several challenges[2]
- Beamforming is one of many viable strategies to combat these issues[3]
Project Goals

- Develop the capability to prototype a Uniform Linear Array (ULA) on a Software Defined Radio (SDR) platform in a lab environment

- Demonstrate the ability to steer transmissions and receptions using multiple hydrophone elements

- Evaluate beamforming capability using SDR hardware and wired connections
Design Considerations

- Beamformer design
 - Time domain vs. frequency domain beamforming
 - Element spacing
 - Number of elements
 - Windowing
 - Steering and Nulling

- SDR Implementation
 - Must run in real time
 - Ettus X310 supports 2 TX channels or 4 RX channels
Hardware

- Provided by MITRE
- Two Ettus X310 USRP software defined radios to send and receive real signals
 - Two wide-bandwidth daughterboards slots
 - C++/Python driver support
- Two UDOO x86 boards to operate as Host Computers
 - Windows, Linux, and Android compatible
Technical Solution Phase 1

MATLAB development of beamforming capability in simulated channels

- AWGN and Stojanovic channels adapted for use with arrays
- Custom time domain and frequency domain beamformers
- Testing beamformers for transmission and reception of QPSK signals over AWGN and Stojanovic acoustic channels
Technical Solution Phase 2

Creation of a beamforming application for Ettus X310 SDRs

- C++ development
- 2 element transmitter arrays, 4 element receiver arrays
- Adjustable parameters for windowing, number of elements, sampling rate
- Unit testing to verify performance is as expected under a range of operating conditions
- Testing transmitter and receiver beamforming over simulated channels
- Multi-in Multi-out (MIMO) transmission and reception with USRPs
Beamforming Class

- A beamforming class was developed in C++
- A beamformer object is instantiated with the desired geometry
- Methods for transmission and reception in any direction have been developed
 - High sampling rates are assumed allowing use of integer sample delays
 - Transmission takes a single input and generates multiple transmission vectors
 - Reception takes multiple received vectors and outputs a single steered reception vector
- Arbitrary weights can be applied across the array with built-in normalization of the weight vector
Beamforming Results

Clean Beamformed Waveform

- Channel 1
- Channel 2
- Channel 3
- Channel 4

4 Element Beamformer Noise Reduction

- Received Signal
- Beamformed Signal
Spring 2020 Project Timeline

- **1/21/20:** Test Matlab Beamsteering
- **2/10/20:** Develop Beamforming Class
- **3/1/20:** Develop MIMO Class
- **3/21/20:** Debug Class Code
- **4/10/20:** Implement Prototype into SDR
- **4/10/20:** SDR Troubleshooting/Testing
- **4/30/20:** Collect Performance Data
- **4/30/20:** Prepare Final Deliverables
RACI Chart

<table>
<thead>
<tr>
<th></th>
<th>Evan</th>
<th>Sydney</th>
<th>David</th>
<th>MITRE</th>
<th>Dr. Anwar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab Development</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>Beamforming</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>Rician/Autoregressive Channel</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>C++ SDR Development</td>
<td>I</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>Acoustic Communications Research</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>Stojanovic Acoustic Channel</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
</tr>
<tr>
<td>Reports and Presentations</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>
References

References

