Bluetooth Enabled Coffee Machine

Team Members:
Lam Dinh
Jesse Garrard
Shayan Rizvi
Mevludin Guster

Advisor: Marten Van Dijk
Sponsor Contact: Michael Daigle
Who are we?

Team Members:
• Jesse Garrard
• Lam Dinh
• Shayan Rizvi
• Mevludin Guster

Advisor: Marten Van Dijk
Sponsor Contact: Michael Daigle
Outline

• iDevices
• Our Project
• Keurig Coffee Maker
• Hardware and Microcontroller
• Servo Motor
• Android Application
iDevices

- Founded in 2010
- Located in Avon, CT
- “Leaders in the development of app-enabled products and processes”.
- Develops app-enabled products both independently and with partner companies.
Our Project

• To Bluetooth-enable a coffee machine that will allow users the convenience of operating the machine from any location in its vicinity.

• Keurig Coffee Maker

• Electronic components
 – AVR Microcontroller
 – Broadcom Bluetooth Module
 – Servo motor

• Android App
Keurig Coffee Maker (B40)

- 4 PCBs
 - Power conditioning and fuse board
 - Main Board: AVR Microcontroller
 - Heat control/filtering and power distribution
 - Button Interface Board
Hardware Components

• Take apart a Coffee maker

Microcontroller

LCD indicator

Voltage Conversion circuit

Wires for heating element
Microcontroller and Bluetooth Module

• Atmega 328
 – Operating Voltage: Vcc=5V
 – 32 Kb Flash memory
 – 23 GPIO, 10bit-ADC

• Bluetooth Module (Broadcom)
 – Operating Voltage: Vcc=3.3V
 – Operating range: 50-75ft
 – Send and receive with AVR via serial communication
Servo Motors

- Used in robotics, toy cars, airplanes, etc.
- It has circuitry built in the motor unit and has a positionable shaft which is fitted with a gear.
- The motor of the servo is controlled with an electric signal which ends up determining the movement of the shaft.
- Made up of a small DC Motor, potentiometer and a control circuit.
Servo Motors (Continued)

- Servo Motors turn 90 degrees in either direction resulting in 180 degrees of total movement.
- Servo’s run on proportional control – this means the motors speed proportional to the difference in the servo’s position from its desired position. So it will move at a slower rate if it is closer to the desired position. This is a very efficient model.
- There are two types of Servo motors
 - AC and DC
- AC Servo’s handle higher currents and are designed for industrial machinery.
- DC Servo’s handle smaller currents and are used for smaller applications, this goes to show that we will be applying a DC Servo motor.
Servo Application w/Keurig

• The goal is to expand the idea of the coffee maker
• Allowing the user to select the brand of coffee they want to have brewed at a specific time from the smart phone application
• Integrating the Servo motor with the Keurig coffee maker so it can apply the proportional control to rotate the different K-cups within the Keurig
Software

- Java
- Communication via Bluetooth(API 5)
- Minimum Froyo(2.2)(API 8)
- Current Jelly Bean(4.3)
- Basic Layout
- User friendly
Android Application

- Set time to brew
- Coffee ready push notification
- Water level
- Cup size (8oz, 10oz, 12oz)
- Flavor
- Stop/Cancel Brew
When Will This Work Occur?

First Semester																				
----------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	
Meet with advisor	9																			
Create Project																				
Specification																				
Create Project																				
Proposal Presentation																				
Research Keurig																				
Research Bluetooth Module																				
Design																				
Initial testing																				

Second Semester																				
Design Circuit	3																			
Build Circuit		3																		
Design PCB																				
Design Mech.																				
System																				
Build Mech.																				
System																				
Budget

• Prototyping Cost < $1000
• Final Product Cost < $300
Demo

• ATmega328P Microcontroller
• RN42 Bluetooth Module
QUESTIONS?