DSP Comm: AquaComm Modem

27 September 2013
High Reliability of Communications

- Designed for highly reliable underwater communications
 - Works in virtually any real world sea state where others have failed
 - Dramatically reduces operational risks and maintenance costs

- Major organizations have tested and proven the reliability of this modem through commercial use
 - Brings certainty and confidence that your application will work
Low Power Consumption

• This modem uses 10 – 20 times less power than competing modems
 • Lower maintenance requirements and total cost of ownership
 • Broadens the applications the modem can be used for
Ease of Integration

• Small form factor, lightweight
 • Quick and low-cost integration

• Transparent command modes
 • Lower total cost of ownership

• Command structure that is easy to understand

• Can quickly and successfully integrate with numerous products
Small Form and Lightweight

• Less than half the size of competing modems
 • Broadens the types of applications the modem can be used for
Specs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rates</td>
<td>100 or 480 bits per second depending on model</td>
</tr>
<tr>
<td>Bit Error Rate</td>
<td>10^{-6} bit error rate or better</td>
</tr>
<tr>
<td>Acoustic Doppler Tolerance</td>
<td>High immunity to noise and to multi-path and Doppler fading.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Broadband operation 16KHz to 30KHz</td>
</tr>
<tr>
<td>Range</td>
<td>Tested to 3km range. Longer ranges possible</td>
</tr>
<tr>
<td>Modulation</td>
<td>Direct sequence spread spectrum / OFDM</td>
</tr>
<tr>
<td>Error detection</td>
<td>CRC16 error detection</td>
</tr>
<tr>
<td>Through water communications protocol</td>
<td>Confirmed packet delivery with error detection. If the transmitting end does not receive an acknowledgement, it will resend the data two more times. Number of retries is configurable.</td>
</tr>
<tr>
<td>Addressing</td>
<td>Uniquely addressable. Six digit numeric address set through host command.</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>Ability to set the receive sensitivity</td>
</tr>
<tr>
<td>Transmit power</td>
<td>Ability to set the transmit power level</td>
</tr>
<tr>
<td>Physical size</td>
<td>8cm x 7cm x 1.5cm (excluding transformer)</td>
</tr>
</tbody>
</table>

Electronics	Digital signal processor based
Power supply input voltage	DC 5V to 9V
Current consumption @ 6V DC	42mA (nominal) in normal wake operation
	4.2mA in power save receive
	Less than 150uA in sleep mode
External connections	10 pin KK header to connect power, host communications, reset line and wake up line
	2 pin terminal to connect hydrophone transducer
Host communications	RS232 serial communications.
	9600 baud (default), 1 start bit, 1 stop bit, no parity
	4800, 2400 or 1200 baud programmable
	Either TTL voltage levels (3.3V) or RS232 voltage levels selectable
Host command	Simple ASCII command set to configure and command the modem
Temperature range	-5 degC to +50 degC
References

http://www.dspcomm.com/products_aquacomm.html

• DSPComm website
Challenges to UAN Security

• Long Propagation Delays
• Narrow Bandwidth
• Multipath Effects
• Cannot directly apply existing terrestrial security schemes to UAN’s (Underwater Acoustic Networks)
• Difficult to model an aqueous environment accurately

UAN Threats, attacks, and defenses

<table>
<thead>
<tr>
<th>Protocol Stack</th>
<th>Security Issues</th>
<th>Attacks</th>
<th>Defenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Layer</td>
<td>Intrusion Detection</td>
<td>Jamming</td>
<td>CDMA Scheme Low duty cycle Tamper-proofing Hiding nodes</td>
</tr>
</tbody>
</table>

Types of Attack

- Denial of Service (DoS) Attack
- Wormhole Attack
- Dummy (signal) Jammer
- Smart (Deceptive) Attack

Wormhole Attack

A wormhole attack is a denial of service attack in which an adversary records a packet at one location in the network, tunnels the packet to another location and replays the recorded packet.

Dummy (Signal) Attack

- Knows nothing about the protocols of the network
- Generates noise to corrupt packets
- UAN’s exist in an open environment and are particularly vulnerable.

Smart (Deceptive) Attack

• Knows some information about the network protocols
• Generally does not follow the MAC (medium access control protocol)
• Uses legitimate control or data packets to corrupt the channel
• This type of jammer will pretend to be a legitimate node.

Modes of Attack

• Constant Attack – Continually injects signals (noise or regular packets) into the communications channel.

• Random Attack – Will alternate between attacking and sleeping in a pseudo-random fashion.

• Reactive Attack – When network activity is sensed the jammer will start attempting to jam the network. This is considered to be more advanced.

Jammer

• The same as was used by Zuba?

Effective Jamming

- Preamble is the most effective attacking point
- Effective scheme requires three phases:
 - Detection of transmission (1)
 - Starting jamming transmission (2)
 - Period of jamming transmission (3)
 - Signal Propagation Time (4)

Physical Layer Potential Solutions (OFDM)

- Chaotic Modulation instead of QAM or BPSK
 - Trade performance for security
 - Tested in terrestrial networks, nothing found on UAN’s
Project Specifications

• Team 185 Project Specification on Google Docs